翻訳と辞書
Words near each other
・ Alpha Pi Omega
・ Alpha Pictoris
・ Alpha Piscium
・ Alpha Plus
・ Alpha Plus Group
・ Alpha Polaris
・ Alpha Prime
・ Alpha process
・ Alpha Protocol
・ Alpha Psi Lambda
・ Alpha Psi Omega
・ Alpha Psi Rho
・ Alpha Pup Records
・ Alpha Pyxidis
・ Alpha Ralpha Boulevard
Alpha recursion theory
・ Alpha Regio
・ Alpha Repertory Television Service
・ Alpha Reticuli
・ Alpha Rev
・ Alpha Rho Chi
・ Alpha Rho Chi Fraternity House (Champaign, Illinois)
・ Alpha Rho Upsilon
・ Alpha Ridge
・ Alpha Ridge Landfill
・ Alpha Ridge, Alaska
・ Alpha roll
・ Alpha Rwirangira
・ Alpha Sagittae
・ Alpha Sagittarii


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Alpha recursion theory : ウィキペディア英語版
Alpha recursion theory
In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals \alpha. An admissible ordinal is closed under \Sigma_1(L_\alpha) functions. Admissible ordinals are models of Kripke–Platek set theory. In what follows \alpha is considered to be fixed.
The objects of study in \alpha recursion are subsets of \alpha. A is said to be \alpha recursively enumerable if it is \Sigma_1 definable over L_\alpha. A is recursive if both A and \alpha / A (its complement in \alpha) are \alpha recursively enumerable.
Members of L_\alpha are called \alpha finite and play a similar role to the finite numbers in classical recursion theory.
We say R is a reduction procedure if it is \alpha recursively enumerable and every member of R is of the form \langle H,J,K \rangle where ''H'', ''J'', ''K'' are all α-finite.
''A'' is said to be α-recursive in ''B'' if there exist R_0,R_1 reduction procedures such that:
: K \subseteq A \leftrightarrow \exists H: \exists J:(H,J,K \rangle \in R_0 \wedge H \subseteq B \wedge J \subseteq \alpha / B ),
: K \subseteq \alpha / A \leftrightarrow \exists H: \exists J:(H,J,K \rangle \in R_1 \wedge H \subseteq B \wedge J \subseteq \alpha / B ).
If ''A'' is recursive in ''B'' this is written \scriptstyle A \le_\alpha B. By this definition ''A'' is recursive in \scriptstyle\varnothing (the empty set) if and only if ''A'' is recursive. However A being recursive in B is not equivalent to A being \Sigma_1(L_\alpha()).
We say ''A'' is regular if \forall \beta \in \alpha: A \cap \beta \in L_\alpha or in other words if every initial portion of ''A'' is α-finite.
==Results in \alpha recursion==

Shore's splitting theorem: Let A be \alpha recursively enumerable and regular. There exist \alpha recursively enumerable B_0,B_1 such that A=B_0 \cup B_1 \wedge B_0 \cap B_1 = \varnothing \wedge A \not\le_\alpha B_i (i<2).
Shore's density theorem: Let ''A'', ''C'' be α-regular recursively enumerable sets such that \scriptstyle A <_\alpha C then there exists a regular α-recursively enumerable set ''B'' such that \scriptstyle A <_\alpha B <_\alpha C.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Alpha recursion theory」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.